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Abstract

The assessment and mitigation of bycatch, currently 
identified as the most significant threat to marine 
mammals, represents a substantial challenge for 
society. This issue is particularly acute in devel-
oping countries, where data on small-scale fisher-
ies are scarce, and knowledge gaps exist regarding 
the distribution and abundance of various marine 
mammal species. Artisanal fisheries, particularly 
in developing countries, have been linked to sig-
nificant mortality levels of marine organisms due 
to bycatch. The magnitude of this phenomenon 
reveals alarming figures. Notably, there is a high 
incidence of interactions between the bottlenose 
dolphin (Tursiops truncatus) and nearshore gill-
nets, where the overlap in their coastal distribution 
creates high-risk zones. The imperative to assess 
bycatch is driven not only by conservation princi-
ples but is also essential for sustainability in devel-
oping countries due to U.S. government regulations 
on imports of fishery products aimed at reducing 
bycatches worldwide. This study proposes an inno-
vative methodology to investigate marine mammal 
bycatch in the southern Gulf of Mexico. This meth-
odology is based on the development of artificial 
intelligence models, the integration of stakeholder 
input, and the use of habitat suitability models. This 
approach utilizes 11 years of sighting records and 
1,654 spatial-temporal fishing effort data points col-
lected through interviews with fishers. Additionally, 
the study develops artificial intelligence models, 
specifically Random Forest algorithms in Python, 
to enhance the analysis and prediction of bycatch 
risk. This research identified monthly variations in 
high-risk zones for marine mammal bycatch in the 
southern Gulf of Mexico, highlighting regions with 
a higher likelihood of interaction with gillnets. This 
pioneering work of applying artificial intelligence 
to marine mammal bycatch provides a complemen-
tary analysis for areas with limited economic and 
data resources.
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Introduction

Bycatch is a significant problem for the conserva-
tion of various marine organisms, leading to the 
extinction of different species around the world 
(Casey & Myers, 1998; Lewison et al., 2004; 
Northridge, 2009; Taylor et al., 2017). It arises 
from direct interaction with fishing activities and 
refers to the unintentional capture of non-target 
species (Hall et al., 2000; Davies et al., 2009). 
Bycatch stands as the primary threat currently 
faced by marine mammals and is responsible for 
the death of hundreds of thousands of individuals 
annually (Read et al., 2006; Reeves et al., 2013; 
Avila et al., 2018). This issue significantly impacts 
demographic and genetic aspects of cetaceans, 
resulting in elevated mortality rates and popula-
tion declines (Mendez et al., 2010; Mannocci et al., 
2021). In particular, the viability of the common 
bottlenose dolphin (Tursiops truncatus) is affected 
by several bycatch events, with numerous records 
of interactions between different fishing methods 
and this species in various regions of the world 
(Díaz-López, 2006; Zappes et al., 2016; Byrd & 
Hohn, 2017). This species exhibits coastal and oce-
anic ecotypes throughout its extensive distribution, 
which encompasses tropical and temperate oceans 
worldwide. Coastal ecotypes are characterized by 
forming smaller groups of females with offspring, 
juveniles of both sexes, or solitary male subgroups 
(Wells & Scott, 2009). The survival of coastal dol-
phins is significantly endangered by their interac-
tion with gillnets (D’Agrosa et al., 2000; Slooten 
et al., 2006; Rojas-Bracho & Reeves, 2013). The 
incidence of bycatch events has increased mark-
edly since the 1970s due to the growing demand 
for resources and the expansion of fishing activity 
driven by population growth (Breen et al., 2017; 
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Cruz et al., 2018). Despite recognising the problem, 
more comprehensive assessments of the impact of 
marine mammal bycatch, such as Tursiops trunca-
tus, in regions where data are scarce or non-existent 
are needed.

To address bycatch internationally, in 2017, 
the U.S. government issued regulations requiring 
countries exporting fishery products to implement 
marine mammal bycatch assessment and mitigation 
measures equivalent to those set forth in the Marine 
Mammal Protection Act as a fundamental require-
ment for access to the U.S. market (Williams et al., 
2016; Johnson et al., 2017). Developing compa-
rable measures represents a significant challenge 
for countries with limited resources. Even though 
import regulations aimed at mitigating bycatch pri-
marily target commercial fisheries, their objective 
is to assess and reduce this issue on a broader scale, 
with each country responsible for implementing 
them. This need is even more pressing in small-
scale fishing, where limited information and high 
marine mammal mortality due to bycatch under-
score the urgency of mitigation and evaluation 
efforts (Moore et al., 2010).

Small-scale fisheries are typified by the utiliza-
tion of smaller vessels and a paucity of sophisti-
cated technologies, representing the most preva-
lent modality among the different types of fisheries 
(Allison & Ellis, 2001; Muallil et al., 2011). 
Artisanal fishing is an essential livelihood for the 
well-being of coastal communities worldwide, 
providing food, employment, and food security 
(Garcia & Rosenberg, 2010; Jentoft et al., 2011). 
Despite their pivotal role in sustaining millions of 
individuals, small-scale fisheries are deficient in 
management plans and projects due to restricted 
access to public resources (Kosamu, 2015; Teh 
et al., 2015). Management deficiencies result in 
a lack of spatio-temporal information on fishing 
efforts, in contrast to the situation observed in 
commercial fisheries (Salas et al., 2007; Stewart 
et al., 2010; Metcalfe et al., 2017). Small-scale 
fishing is a highly important economic activity in 
the state of Yucatán, Mexico. It directly supports 
more than 16,930 people and contributes 14.69% 
to the regional GDP (CONAPESCA, 2022). 
Therefore, it is crucial to develop new methodolo-
gies for bycatch analysis to protect marine mam-
mals and promote the sustainability of coastal 
communities and countries worldwide.

Complementary data is a potential solution to 
the challenges associated with acquiring infor-
mation regarding bycatch (Peltier et al., 2016; 
Murphy et al., 2019). Integrating artificial intel-
ligence and machine learning tools has made it 
easier to address challenges in scientific research 
(Adam et al., 2017; Gakhar et al., 2024). The 
use of these tools has made it possible to infer 

patterns that traditional analytical methods had 
not previously identified through the extraction 
and management of large volumes of data. The 
use of these methodologies in marine research 
is relatively recent and is scarce in the bycatch 
study (Salman et al., 2020; Long et al., 2024). 
Furthermore, integrating geographic information 
systems and participatory mapping, in conjunc-
tion with the involvement of stakeholders, allows 
for addressing information gaps in data-limited 
contexts through local expertise.

The state of Yucatán is in southeastern Mexico. 
Along with Campeche and Quintana Roo, it forms 
the Yucatán Peninsula, a vast karstic plain that 
separates the Gulf of Mexico from the Caribbean 
Sea. The Campeche Bank, an extensive conti-
nental shelf surrounding the Yucatán Peninsula, 
expands seaward up to 300 km from the north 
coast of the Yucatán Peninsula. This extensive 
continental shelf is rich in marine resources 
supporting many key species for artisanal fish-
ing. The high diversity of species in the area has 
driven the implementation and development of a 
range of artisanal fishing techniques. The fishing 
methods implemented in Yucatán include gillnets, 
longlines, bottom longlines, handlines, harpoons, 
and a selective method called Jimba, which uti-
lises a 7.5-m bamboo pole for the capture of octo-
puses. The artisanal fleet consists of fibreglass 
vessels ranging in length from 8 to 12 m, equipped 
with outboard motors ranging from 50 to 75 hp 
(Fernández-Méndez et al., 2011). Yucatán state 
consists of 12 coastal municipalities, including 
14 fishing communities, along 378 km of coast-
line. For the study, the Yucatán coastline is anal-
ysed among three regions—Western, Central, and 
Eastern—based on hydrological characteristics 
(Merino, 1997; Herrera-Silveira et al., 2004). The 
Western region is composed of the communities 
of Sisal and Celestún; the Central region includes 
the towns of Dzilam de Bravo, Telchac, and 
Progreso; and the Eastern region encompasses the 
fishing communities of San Felipe and El Cuyo.

Processes aimed at reducing marine mammal 
bycatch require the participation and integration 
of the various stakeholders involved in this issue, 
including fishers, government authorities, and 
the scientific community. The present research, 
developed in three phases, proposes a novel, 
low-cost methodology that integrates multiple 
tools such as machine learning and diverse data 
sources for the spatio-temporal characterization 
of marine mammal bycatch in the southern Gulf 
of Mexico. The first stage involved estimating the 
habitat suitability of Tursiops truncatus through 
an exhaustive analysis of 8 y of sighting records, 
complemented with data from literature on the 
study area. The next phase focused on estimating 
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the spatio-temporal fishing effort by gathering 
data from interviews, scientific publications, and 
government sources. Finally, a Random Forest 
machine learning model identified areas at risk of 
monthly bycatch based on habitat suitability and 
fishing effort, categorized by the type of fishing 
gear used in the region.

Methods

Habitat Suitability Modelling
The habitat model for Tursiops truncatus cov-
ered a larger area than the study region due to the 
species’ high mobility and the absence of geo-
graphical barriers limiting its distribution. The 
modelling area covered the Gulf of Mexico and 
extended from the Northwestern Atlantic region, 
bounded by the coast of the South American con-
tinent, including the maritime areas of the Greater 
and Lesser Antilles, to the warm-temperate oce-
anic provinces of the Northwestern Atlantic.

The Autonomous University of Yucatan’s 
Marine Mammal Research and Conservation 
Program (PICMMY-UADY) has conducted 
monitoring efforts over 11 y, aiming to record 
marine mammal sightings in the southern Gulf 
of Mexico. Unlike the northern Gulf, where 
abundant information exists, the southern region 
shows a significant lack of data on sightings of 
these species. The data obtained during the navi-
gational process encompass comprehensive infor-
mation, including the geographic location (as 
determined by GPS), time, date, sampling effort, 
and the marine mammal species identified. In the 
interest of focusing the present study on a single 
species, only the records of Tursiops truncatus 
were utilized.

Additionally, an exhaustive search for species 
presence-only data was conducted in the scientific 
literature, including peer-reviewed articles, gov-
ernment reports, and theses. To avoid a negative 
correlation between presence records and envi-
ronmental variables, which could be attributed 
to areas with higher record density, the data were 
filtered using the ‘spThin’ package in R soft-
ware. Using a random approximation algorithm, 
the “thin” function filtered the geographic points 
corresponding to the sighting records, based on a 
distance of 35 km, which reflects the estimated 
average movement range for Tursiops truncatus 
(Irvine et al., 1981).

Environmental Predictors
According to the previous work, five predictors 
were selected for analysis, two oceanographic 
and three bathymetric, associated with the occur-
rence of marine mammals (Praca et al., 2009; 
Fernandez et al., 2018; Ramírez-León et al., 

2021). The oceanographic predictors were sea 
surface temperature (SST, °C) and chlorophyll-a 
(Chl-a) concentration (mg/m³). Chl-a concen-
tration is an indirect indicator of phytoplankton 
presence, reflecting the abundance of primary 
producers. This relationship allows for the infer-
ence of the distribution and abundance of higher 
trophic levels, such as Tursiops truncatus, through 
bottom-up trophic processes (Ware & Thomson, 
2005; Huot et al., 2007). Data corresponding to a 
12-y period from 2011 to 2023 were downloaded 
and averaged, including metrics for maximum, 
minimum, and mean values obtained using the 
MODIS-Aqua sensor from the Ocean Color portal 
(https://oceancolor.gsfc.nasa.gov). The informa-
tion has a spatial resolution of approximately 
0.041° (equivalent to about 4 km) with a process-
ing level of L3. The bathymetric variable predic-
tors included bathymetry (D, m), bottom slope 
(B, degrees), and distance to the 200-m isobath 
(D200, m). Bathymetric data were obtained from 
the General Bathymetric Chart of the Oceans 
(GEBCO; https://www.gebco.net). A custom 
computational routine was developed using the 
‘Rasterio’ and ‘GDAL’ packages in Python to per-
form multiple processing steps on the downloaded 
bathymetric data. ‘Rasterio’ was employed to 
read and manipulate the raster data, and ‘GDAL’ 
was utilized to calculate the seabed slope and the 
distance to the 200-m isobath. This process was 
achieved through functions that facilitated raster 
reprojection, resampling, and spatial analysis 
operations. The collinearity among the analyzed 
variables was assessed using Pearson’s correla-
tion coefficient, employing the ‘corrplot’ package 
in R. This package allows for the visualization of 
the correlation matrix, making it easier to identify 
relationships between variables. Additionally, the 
‘mecofum’ package in R facilitated the selection 
of uncorrelated predictors by establishing a cor-
relation threshold of 0.7.

We used the ‘ENMeval’ package in R to model 
habitat suitability and then employed MAXENT 
software to predict this suitability. Based on pre-
vious studies, we constructed a model using a 
random sample of 10,000 geographic points spa-
tially distinct from the records catalogued in the 
previous stage. We fitted the MAXENT algorithm 
to linear, quadratic, and hinge features.

We performed cross-validation of the model 
using a block methodology, dividing the dataset 
into four groups. The MAXENT algorithm evalu-
ated one of the blocks while using the other three 
to train the algorithm. The performance of each 
model generated from the different MaxEnt runs, 
resulting from the combinations of selected linear, 
quadratic, and hinge features, was evaluated using 
the area under the curve (AUC) and the omission 
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rate (OR). These indicators measure, respec-
tively, the discriminatory ability of the models 
and the proportion of test locations that fall within 
cells not predicted as suitable (Elith et al., 2006; 
Phillips et al., 2006). The logistic model output 
was employed to ascertain habitat suitability 
within a raster with a resolution of 0.04°, encom-
passing the entirety of the study area. The suit-
ability values are expressed on a scale from 0 to 
1, with 0 representing low habitat suitability and 1 
indicating high habitat suitability.

Spatio-Temporal Fishing Effort
This research used a rapid interview tool com-
monly employed to obtain data on fishing efforts 
and bycatch of marine organisms. The interview 
was modified to align with the local context to 
facilitate its implementation (Moore et al., 2010). 
The questionnaire was divided into two main sec-
tions. The first focused on identifying the marine 
mammal species sighted by fishers and their fre-
quency of this success. The second section of the 
study was designed to collect data on the various 
fishing gears employed in the region, with partic-
ular attention paid to the frequency and seasonal 
patterns of their utilisation. A map of the maritime 
regions surrounding the interview locations was 
created. The marine area adjacent to each locality 
was divided into 6-km-wide hexagons. The objec-
tive of the map was to enable fishers to identify 
the areas in which they conducted their fishing 
activities, indicating the month and type of fish-
ing gear employed.

The interviews were conducted over 2 y, from 
2022 to 2024, at the landing ports. The objective 
was to conduct 50 interviews per port; however, 
the degree of receptiveness exhibited by the fishers 
varied across the different study areas, resulting in 
some locations meeting the proposed target. While 
few efforts have been made in the study area, this 
work provides valuable insights into the available 
information. An additional 30 interviews in each 
site were conducted in the various study ports to 
assess the spatial correspondence of the selected 
hexagons with the information gathered at the 
beginning of the research to validate the collected 
data. The analysis demonstrated the consistency of 
the hexagons with the designated fishing areas.

The data obtained from the maps utilized in 
the interviews was digitized employing QGIS 
software. A vector layer was created, compris-
ing all the collected data and arranged in accor-
dance with the hexagonal grid. The fishing effort 
was estimated in square metres for gillnets; in 
thousands of hooks for longlines; and in fishing 
units for Jimbas, fishing line, and traps, based 
on the information provided by the fishers. We 
calculated fishing effort means and standard 

deviations by gear type, with the results broken 
down monthly by location and represented in the 
generated map.

Analysis of Fishing Effort and Density Using 
Python
We used a geospatial data processing approach to 
analyse fishing effort and its spatio-temporal den-
sity. The process employed specialized Python 
libraries for spatial analysis and large-scale data 
management, including NumPy, Pandas, and 
‘Rasterio.’ We also developed personalized com-
putational routines incorporating the “Haversine” 
function for distance calculations. The methodol-
ogy consisted of loading a CSV file with the infor-
mation obtained in the previous stage using the 
Pandas library. A cell size of 0.04° was defined, 
which would be used to create a grid over the study 
area, and this size was selected to obtain adequate 
resolution. Grid boundaries were then established 
using the “np.arange” function, generating a range 
of values from the minima and maxima of the coor-
dinates. A function was developed to assign each 
fishery record to a grid cell using “np.arange” to 
sort the values into predefined ranges. The centre of 
each cell was then calculated, allowing the location 
of the records to be more accurately represented by 
adding half the cell size to the cell index position. The 
number of records in each cell was counted using 
the Pandas library, generating a new DataFrame 
showing the density of records per cell. Finally, the 
relevant columns were selected and saved in a new 
CSV file. To facilitate the interpretation of the data, 
the calculated densities were normalised by divid-
ing each value by the maximum, allowing the den-
sity to be displayed on a scale of 0 to 1. The values 
were classified into four ranges, from 1 to 4, based 
on their density and fishing effort, where level 4 
corresponds to high, level 3 to medium, level 2 
to low, and level 1 to null. Bathymetric data and 
the distance to the nearest fishing port were added 
to the information obtained from the generated 
cells. We designed a computational routine using 
Python to convert decimal coordinates into raster 
file indices using the “raster index” function. Next, 
linear interpolation was applied to the four nearest 
pixels to enhance the spatial precision of the center 
of each grid. Finally, a function was developed to 
extract the depth values corresponding to each geo-
graphic point. The obtained values were assigned 
to the corresponding spatial analysis cells within a 
DataFrame.

The distance between each cell and the fish-
ing locality was determined using a Python script 
that implements the “Haversine” formula. A func-
tion named “Distance” was created, which takes 
the longitudes and latitudes of the cells and the 
localities of interest as parameters. This function 
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calculated the distance in kilometres for each stud-
ied cell during the analysed period. The calculated 
distances were organised into a NumPy array 
and incorporated as a new column in the original 
DataFrame. We assessed the differences in fish-
ing effort among months using a non-parametric 
analysis of variance test (Kruskal-Wallis H). This 
methodology provides a clear and systematic 
framework for analysing monthly fisheries data, 
allowing for effectively identifying geographical 
patterns and concentrations.

Bycatch Risk Assessment Using Artificial 
Intelligence
The marine mammal bycatch risk assessment was 
conducted by developing and implementing a 
machine learning model in Python designated as 
a random forest. Random Forest is a supervised 
machine-learning model that uses decision rules 
to classify data based on independent variables. 
The analysis is performed by recursively identi-
fying patterns across multiple decision trees. The 
algorithm divides the data into subsets based on 
the independent variables evaluated in each tree. 
The result is obtained through a statistical exer-
cise, which calculates the mode of the classifica-
tions made by all the trees.

The dependent variable obtained corresponds 
to the marine mammal bycatch risk classification, 
categorized into five levels ranging from 0 to 4, 
ordered from lowest to highest. Level 0 represents 
no risk, while level 1 covers a risk range of 1 to 
25%, level 2 from 26 to 50%, level 3 from 51 to 
75%, and level 4 from 76 to 100%. The indepen-
dent variables included in the Random Forest 
model, based on findings from previous stages 
of the investigation, are habitat suitability of 
Tursiops truncatus, fishing density, fishing effort, 
fishing gear types, latitude, longitude, distance to 
the fishing port, bathymetry, month, region, and 
the geographic locations of bycatch events, deter-
mined over an 11-y study developed by PICMMY 
in the region using oceanographic models. All 
information was geospatially structured in a 0.04° 
grid for analysis using the artificial intelligence 
model.

A custom Python routine was developed to 
build a Random Forest model using the “scikit-
learn” machine learning library. Data collected in 
earlier stages were incorporated into the method-
ological stage. The model was designed to include 
the SMOTE (Synthetic Minority Over-sampling 
Technique) method. This strategy creates syn-
thetic instances of the minority class, enhanc-
ing the model’s ability to detect representative 
patterns.

Spatio-Temporal Maps of Marine Mammal 
Bycatch Risk
A Random Forest Classifier was built with 1,000 
estimators and a maximum depth of 20, training 
the model on the balanced dataset. The model’s 
performance was evaluated using standard metrics 
such as the confusion matrix, classification report, 
and accuracy, calculated with “scikit-learn” func-
tions. Additionally, the importance of the model’s 
features was analysed to identify the most influen-
tial variables in the predictions. Cross-validation 
was performed using StratifiedKFold to ensure 
the model’s robustness. Finally, the model’s per-
formance was visualised using the matplotlib and 
seaborn libraries, producing ROC (receiver oper-
ating characteristic) curves and precision-recall 
graphs. These visualisations allowed for evaluat-
ing the validity of all analysed categories of inci-
dental marine mammal bycatch risk.

The geospatial visualization of marine mam-
mals’ probability of incidental catch by month in 
the southern Gulf of Mexico was conducted by 
generating a Python script that loaded inciden-
tal catch risk files in CSV format. The data were 
transformed into point geometry for representa-
tion in the spatial coordinate system. Next, the 
probability of incidental catch of marine mam-
mals was classified into four levels to facilitate 
analysis: the first level ranges from 0 to 25%; the 
second from 25 to 50%; the third from 50 to 75%; 
and the fourth from 75 to 100%. The resulting file 
was exported in shapefile format for manipulation 
and presentation using QGIS software.

Results

A total of 268 interviews were conducted across 
the seven study locations, resulting in 1,654 data 
points (geospatial records) of fishing efforts in 
Yucatán state. At least 30 interviews were carried 
out in each location. Additionally, 38% of the inter-
viewed fishers reported sightings of marine mam-
mals. The greatest concentration of gillnet fishing 
effort was observed in January and July. The non-
parametric annual variance analysis identified dif-
ferences in fishing efforts between months (H11 = 
68.5; p < 0.05). The change in the dynamics of fish-
ing gear coincides with the beginning of the octo-
pus fishing season (Octopus maya, Octopus vul-
garis) which uses Jimbas. This fishing method does 
not negatively impact marine mammals. However, 
despite the frequent use of Jimbas from August to 
December, a remnant of gillnet fishing persists, 
representing less than 10% of fishing activity.

The artificial intelligence model developed 
allowed the monthly identification of marine 
mammal bycatch risk areas with an accuracy of 
82.63%. The variable that contributed the most to 
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the model, as measured by the reduction in mean 
squared error, was the fishing gear, with 15.98%. 
Next, fishing effort contributed 14.79%, followed 
by habitat suitability with 12.08%. The month 
explained 11.84% of the variability, while lati-
tude and longitude contributed 10.12 and 10.09%, 
respectively. Distance, region, and bathymetry 
contributed 9.48, 7.01, and 7.25% in that order. 
Finally, the locality variable accounted for 1.35% 
of the Random Forest model.

A comprehensive evaluation of the model was 
conducted. First, the ROC, precision recall, and 
learning curves were analysed to assess its overall 
performance. Additionally, potential errors, includ-
ing hallucinations, were investigated through cross-
validation and a systematic evaluation in which the 
obtained results were compared with spatio-tempo-
ral information on bycatch zones extracted from an 
11-y study based on Lagrangian models conducted 
by our research group. Finally, the results were 
validated by regional experts in marine mammals 
and fishery resources. The cross-validation process  

yielded an average value of 0.84 with a standard 
deviation of 0.03. The machine learning model 
generated for bycatch analysis demonstrates an 
accuracy greater than 0.98 (Figure 1). The cross-
validation curve exhibits significant fluctuations 
when using fewer than 800 data points. However, 
both the training and cross-validation curves tend 
to stabilize and converge once 1,000 training data 
points are reached. This behaviour suggests the 
absence of overfitting and good performance of the 
generated model.

The relationship between the true positive rate 
and the false positive rate (Figure 2) highlights the 
model’s ability to differentiate the spatio-temporal 
probabilities of risk of marine mammal bycatch 
in the study area. The model demonstrates a 
high predictive capacity for risk levels 0, 1, 2, 
and 4, whose curves show excellent behaviour, 
approaching the upper left corner. In contrast, the 
curve for class 3 shows slightly erratic behav-
iour indicating good performance, albeit with 
some false positives and negatives. The model 

Figure 1. The learning curve of the artificial intelligence model for spatio-temporal assessment of bycatch risk using 1,654 
supporting data points. Training and cross-validation curves are included.
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Figure 2. The ROC (receiver operating characteristic) curve showing the relationship between the true positive rate and the 
false positive rate in the prediction of the following five bycatch risk levels in the study area: 0% (class 0), 1 to 25% (class 1), 
26 to 50% (class 2), 51 to 75% (class 3), and 76 to 100% (class 4).

predicts with high accuracy areas with bycatch 
risk between 0 and 50%, as well as between 76 
and 100%, while it performs less consistently 
when predicting areas with risks between 51 and 
75%. This behaviour can be explained by the dif-
ficulty in identifying areas of intermediate risk  in 
contrast to those areas where there is a marked 
incidence of bycatch or no bycatch at all. All risk 
levels have an area under the curve greater than 
0.94, showing a good fit for the model.

The relationship between precision (the accu-
racy of positive predictions) and recall (true posi-
tive rate) allows for the evaluation of the model’s 
high performance (Figure 3). Classes 0, 1, and 2, 
representing risks between 0 and 50%, demon-
strate optimal performance, exhibiting high pre-
cision and recall values. The model accurately 
predicts areas with a bycatch risk below 50%. 
However, in classes 3 and 4, corresponding to 
regions with risks between 51 and 100%, more 
significant variability is observed, as evidenced by 
a slight decrease in precision as recall increases. 

This pattern suggests that as the model attempts to 
capture more true positives, it generates a reduced 
proportion of false positives. 

Despite this variability, the model maintains 
a high capacity to predict areas at risk of marine 
mammal bycatch. Its performance is consistent 
across different risk levels, with high scores in the 
ROC curve indicating good generalisation and the 
absence of overfitting as the validation data exhibit 
behaviour consistent with the training data.

The confusion matrix heatmap demonstrates an 
adequate capacity for assigning risk levels within 
the training partitions (Figure 4). The model accu-
rately predicts bycatch risk levels between 0 and 
50%. The accuracy of risk level prediction in areas 
with risk levels between 76 and 100% is slightly 
diminished, with a misclassification rate of 8%. In 
contrast, class 3, corresponding to risk predictions 
between 51 and 75%, demonstrates a lower degree 
of consistency, with 50% of correct assignments, 
22% classified as a higher risk level, and 57% clas-
sified as one risk level lower. Despite the overall 
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Figure 3. A precision-recall curve illustrating the relationship between precision (accuracy of positive predictions) and recall 
(rate of true positives) in determining the following five levels of marine mammal bycatch risk in the study area: 0% (class 0), 
1 to 25% (class 1), 2 to 50% (class 2), 51 to 75% (class 3), and 76 to 100% (class 4).

Figure 4. A confusion matrix heatmap shows the classification of five levels of marine mammal bycatch risk in training 
partitions: 0% (class 0), 1 to 25% (class 1), 26 to 50% (class 2), 51 to 75% (class 3), and 76 to 100% (class 4). Values on the 
diagonal represent correct predictions, while values outside the diagonal indicate misclassification errors between classes.



289Machine Learning Method to Assess Bycatch

good model performance, it is worth noting that the 
assignments tend to occur in adjacent risk levels, 
suggesting that predictions remain close to the 
actual value, limiting large-scale errors in determin-
ing bycatch risk areas for marine mammals.

Spatio-Temporal Maps of Marine Mammal 
Bycatch Risk
In January, areas with a high bycatch risk are 
observed across all three study regions. However, 
the highest risk zones are concentrated in the central 
region, particularly in the localities of Progreso and 
Dzilam de Bravo (Figure 5). These areas are located 
between 8 and 15 km from the coastline. The dis-
tance from the shore pattern is consistent throughout 
the study area. This phenomenon can be attributed to 
competition with other fishing gear, such as line and 
longline fishing, which has the effect of excluding 
other maritime regions. In the eastern region, spe-
cifically in the locality of El Cuyo, a considerable 
extent of areas at risk of incidental catch of marine 
mammals has been identified. Additionally, a spatial 
association between the risk areas and the central 
fishing localities in the region is evident. A lim-
ited interaction zone between fishing activities and 

the habitat of Tursiops truncatus characterizes the 
locality of Celestún, located in the western region. 
However, in this restricted area, there is a high risk 
of bycatch (75 to 100%), suggesting an intensified 
use of gillnets in a confined maritime region.

Spatio-temporal analysis of the probability of 
Tursiops truncatus bycatch along the Yucatán 
coast revealed clear temporal patterns. The dis-
tribution of marine mammal bycatch risk exhibits 
seasonal variations throughout the year (Figure 6). 
During the initial 2-mo period, the areas exhibit-
ing the highest risk levels are primarily concen-
trated in the central region, between Progreso 
and Dzilam de Bravo. In contrast, the western 
and eastern regions exhibit fewer risk zones, with 
Celestún and San Felipe emerging as the areas 
with the lowest concentration of critical points. 
Although the concentration of high-risk areas (red 
and yellow points) persists in March, their extent 
is diminished in comparison to previous months. 
From April to June, there is an increase in inter-
actions between fishing activities and Tursiops 
truncatus, resulting in the expansion of high-risk 
zones from the central region eastward, reaching 
locations such as San Felipe and El Cuyo. In the 

Figure 5. Spatial-temporal assessment of bycatch probability for Tursiops truncatus in the southern Gulf of Mexico. Red 
areas indicate high risk (76 to 100%), orange areas indicate moderate-high risk (51 to 75%), green areas indicate moderate-
low risk (26 to 50%), and blue areas indicate low risk (1 to 25%).
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Figure 6. Annual spatial-temporal assessment of bycatch probability for Tursiops truncatus in the southern Gulf of Mexico. 
Red areas indicate high risk (75 to 100%), orange areas indicate moderate-high risk (50 to 75%), green areas indicate 
moderate-low risk (25 to 50%), and blue areas indicate low risk (0 to 25%).
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western region, the expansion is less uniform, with 
most new high-risk areas concentrated around the 
fishing community of Sisal. In July, a general 
reduction in risk areas was observed across all 
locations except Telchac, Dzilam de Bravo, and 
El Cuyo, where high-risk zones persisted.

During the first 7 mo of the year, all locations 
demonstrated some level of bycatch risk. Between 
February and July, the spatial distribution of risk 
areas was dispersed, covering distances ranging 
from 14.816 to 27.978 km from the coastline, 
underscoring the widespread nature of the issue.

In August and November, there is a notable 
decline in the probability of incidental capture 
of Tursiops truncatus, with low (0 to 25%) and 
moderate (25 to 50%) risk levels becoming more 
prevalent. In December, however, there was a 
notable increase in incidents of capture risk, 
which resembles the pattern observed earlier 
in the year. Scattered points and concentrations 
near the coastal zone characterise this pattern. All 
locations subjected to analysis exhibited at least 
one region where the risk of incidental capture 
exceeded 75%. The areas with the most elevated 
concentration of high-risk zones were observed 
in the central zone, particularly in Telchac and 
Dzilam de Bravo, where numerous red and yellow 
dots were identified near the coastline. This pat-
tern suggests that the possibility of high-risk inter-
actions may increase towards the end of the year, 
potentially due to changes in fishing activity. 

Discussion

The analysis of bycatch, recognised as the primary 
threat to marine mammals, requires the develop-
ment of novel methodologies to supplement con-
ventional techniques for data acquisition, particu-
larly in contexts where data are scarce. Although 
it was identified in the 1970s, unresolved issues 
still make it difficult to understand and address 
(Hall et al., 2000; Cox et al., 2007; Davies et al., 
2009). This phenomenon, which interacts syner-
gistically with other threats, can devastate several 
stocks, even with only a few entanglement cases 
yearly (Jaaman et al., 2008; Minton et al., 2011; 
Halpern et al., 2015). The lack of data specific to 
small-scale fisheries, coupled with events often 
taking place in remote locations with minimal 
regulatory oversight and public scrutiny, gener-
ates a complex scenario for analysing and mitigat-
ing this threat (Read, 2008). This research pres-
ents a novel complementary analysis of marine 
mammal bycatch. The proposed methodology 
integrates artificial intelligence tools, stakeholder 
knowledge, Lagrangian particle models, and 
habitat suitability models to determine the spatio-
temporal risk of bycatch for Tursiops truncatus. 

To achieve this, environmental and oceanographic 
numeric models and variables are integrated with 
information obtained through participatory map-
ping, ultimately feeding a machine learning model 
designed to categorize areas of bycatch risk.

Implementing programs to assess marine 
mammal bycatch equivalent to those established 
by the Marine Mammal Protection Act in the 
United States poses a significant economic and 
logistical challenge for developing countries 
(Williams et al., 2016). Moreover, this challenge 
is exacerbated in small-scale fisheries, where tra-
ditional monitoring methods are limited by the 
large number of vessels, dispersed landing sites, 
and inadequate regulatory measures (Briscoe 
et al., 2014; Moore et al., 2021). The import provi-
sions outlined in Section 101(a)(2) of the Marine 
Mammal Protection Act, enacted by the National 
Oceanic and Atmospheric Administration in 
2017, are primarily targeted at commercial fisher-
ies. However, bycatch assessment and mitigation 
goals could be addressed in a broader framework 
that addresses all types of fishing activities. The 
need to evaluate this is particularly relevant in 
small-scale fisheries, where access to informa-
tion on fishing activity is limited. The methodol-
ogy proposed in this study is versatile as it can 
be applied to different types of fishing activities, 
offering easily accessible and low-cost alterna-
tives to comply with the regulations imposed. 
This contributes to the conservation of marine 
mammals and to the sustainability of developing 
countries. To address both bycatch analysis and 
fishery product export requirements, complemen-
tary data and the implementation of alternative 
approaches have been proposed to overcome the 
barriers to marine mammal bycatch monitoring in 
data-limited scenarios (Murphy et al., 2019). 

In this study, we propose an alternative that 
incorporates newer methods such as machine 
learning. While the use of artificial intelligence 
tools in marine research is somewhat limited, it 
is even rarer in the field of bycatch (Mannocci 
et al., 2021; Lopez et al., 2024). Previous stud-
ies have employed various strategies, including 
image analysis, echo-sounding, habitat suitability 
assessment, environmental variables, and fisher-
ies information (Poisson et al., 2022; Goikoetxea 
et al., 2024; Long et al., 2024). However, our 
pioneering work in integrating artificial intelli-
gence into the study of marine mammal bycatch 
integrates stakeholder knowledge with traditional 
analytical methods and artificial intelligence tech-
niques in a data-limited region.

The typical approach to bycatch monitoring 
is to employ onboard observers to obtain robust 
catch estimates (Moore et al., 2021). However, this 
methodology may have limitations and might not 
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accurately assess the issue (Peltier et al., 2016; Hines 
et al., 2020). This phenomenon is due to changes in 
fishing activity dynamics when an observer is pres-
ent. In artisanal fisheries, small vessels that limit the 
number of crew members, the large number of boats, 
the dispersion of landing ports, and scarce financial 
resources exacerbate the challenges of implement-
ing onboard observers (Lewison et al., 2004; Clarke 
et al., 2014; Gilman et al., 2014). The integration of 
stakeholders, as proposed in this study (fishers, gov-
ernment agencies, and the scientific community), 
has the potential to address issues arising from a 
lack of local information and contribute to the devel-
opment of more robust theoretical frameworks for 
evaluating and mitigating bycatch on a global scale.

The analysis identified a spatio-temporal varia-
tion in areas with the highest risk of incidental 
catch of marine mammals throughout the year. 
This behaviour is related to changes in the dynam-
ics of fishing activity in the region. For example, 
from 1 August to mid-December, the octopus fish-
ing season is open; octopus fishing is the leading 
fishing resource in the area and does not conflict 
with the capture of marine mammals. This phe-
nomenon, along with the moratorium on grouper 
fishing during February and March, increases the 
use of gillnets, creating a higher risk scenario 
during the first 7 mo of the year.

The incorporation of diverse fishing gear types 
into the bycatch assessment enabled the delinea-
tion of spatially disparate risk zones through the 
exclusion of areas of competition based on the 
specific gear utilized. This approach facilitated 
the identification of spatial risk patterns in the 
central region, particularly along a strip between 
Progreso and Dzilam de Bravo. This finding can 
be explained by the higher density of fishing fleets 
and the proximity to Mérida, which provides easy 
transport and access routes (Monroy-García et al., 
2019).

The results are consistent with the unique pre-
vious study conducted in the region on bycatch, 
which focused on sea turtles. This concurrence 
may be because cetaceans and sea turtles face 
conflicts with gillnets. Although the highest mor-
tality rates of mega vertebrates are associated 
with gillnets, other fishing gear types may also 
negatively interact with species such as Tursiops 
truncatus (Werner et al., 2006; Forney et al., 2011; 
Hamer et al., 2012). The overlap between the dis-
tribution of organisms and the high fishing activ-
ity intensity in coastal areas could explain the high 
mortality rates resulting from bycatch associated 
with artisanal fisheries, where Tursiops truncatus 
is particularly vulnerable. It is essential to include 
various types of fishing gear and to extend the 
analysis to longer time periods to assess interan-
nual variations in fishing dynamics.

The analysis revealed alterations in the mari-
time zone’s scope and the distance from fishing 
grounds in areas with a high probability of bycatch. 
The gradual increase in the extent of these high-
risk areas, observed between February and July, is 
associated with meteorological factors and the rise 
in fishing activity. From December to February, 
the intensification of “Norte” winds impedes fish-
ing activity, limiting the distance covered and 
the search for new operational areas for the fleet 
(Santamaría et al., 2023). Subsequently, an expan-
sion of probable risk areas is observed from March 
to July, which aligns with previous studies in the 
region that have suggested increased resource-
seeking efforts due to declining catches and grow-
ing food demand driven by continuous population 
growth (Fernández-Méndez et al., 2011; Salas 
et al., 2011; Selgrath et al., 2018; Torres-Irineo 
et al., 2021).

This analysis proposes a complementary meth-
odology at the global level and represents a first 
step at the regional level to address marine mammal 
bycatch. It offers insights regarding the sustainabil-
ity of fishing communities and the evaluation of 
this phenomenon. The risk assessments presented 
in this study strengthen management and conser-
vation plans by estimating the likelihood of such 
events (Hobday et al., 2011; Williams et al., 2011; 
Samhouri & Levin, 2012; Briscoe et al., 2014; 
Gibbs & Browman, 2015; Verutes et al., 2020). 
However, in small-scale fisheries, management 
plans are often ineffective due to the lack of data 
to accurately determine this issue’s extent. This 
challenge highlights the need to seek complemen-
tary data for more precise estimates (Stelzenmüller 
et al., 2015). Participatory mapping and stake-
holder engagement effectively solve this problem 
through a two-way approach. First, they facilitate 
access to large amounts of local information and 
allow results to be effectively communicated to 
fishing communities and regulators (Wiber et al., 
2004; Alfaro-Shigueto et al., 2010; Samhouri & 
Levin, 2012; Trimble & Berkes, 2013; Bradbury 
et al., 2014; Rosenthal et al., 2015; Cominelli et al., 
2019). Integrating artificial intelligence tools com-
plements traditional methods, strengthens manage-
ment plans, and helps reduce bycatch, even in con-
texts of limited resources and information, such as 
in many developing countries.
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