Enhancing Interpretation of Cetacean Acoustic Monitoring: Investigating Factors that Influence Vocalization Patterns of Atlantic Bottlenose Dolphins in an Urbanized Estuary, Charleston Harbor, South Carolina, USA

Supplemental Figures

Caroline Tribble,1,2,5 Agnieszka Monczak,1,3 Lindsey Transue,1,2 Alyssa Marian,1 Patricia Fair,4,5 Brian Balmer,2,6 Joseph Ballenger,7 Hannah Baker,4 Meghan Weinpress-Galipeau,4 Alayna Robertson,4 Allan Strand,2 and Eric W. Montie1,2,5

1Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC, USA
E-mail: emontie@uscb.edu
2Graduate Program in Marine Biology, College of Charleston, Charleston, SC, USA
3Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
4South Carolina Aquarium, Charleston, SC, USA
5Medical University of South Carolina, Charleston, SC, USA
6Dolphin Relief and Research, Clancy, MT, USA
7South Carolina Department of Natural Resources, Charleston, SC, USA
¶These authors contributed equally to this work.
Supplemental Figure 1. Temporal patterns in coastal bottlenose dolphin (*Tursiops erebennus*) echolocation bouts and corresponding depth fluctuations at (A) Wando River, (B) Drum Island, (C) SC Aquarium, (D) Fort Sumter, (E) Ashley River, and (F) Citadel. The color scale on the left indicates intensity based on echolocation (warmer colors represent more echolocation bouts), and the color scale on the right indicates intensity based on depth (warmer colors represent greater depths).
Supplemental Figure 2. Variable importance of confirmed factors influencing bottlenose dolphin vocalizations determined through random forest regression modeling for focused fish and noise models: (A) focused fish model, total vocalizations; (B) focused fish model, echolocation bouts; (C) focused noise model, total vocalizations; (D) focused noise model, echolocation bouts; and (E) focused noise model, whistles.