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Abstract

The rapid emergence of new marine develop-
ments (e.g., marine renewables, port infrastruc-
ture) alongside the substantial growth of existing 
industries has ultimately resulted in an unprec-
edented increase in anthropogenic structures 
within the marine environment over the previous 
century. Knowledge of whether marine species 
interact with, avoid, or accommodate and adapt 
to such structures is essential to ensure that fur-
ther development of marine environments do not 
compromise conservation objectives of marine 
species. This article documents one such inter-
action. Herein, we describe the observation of a 
harbour seal (Phoca vitulina) seeking refuge from 
a group of foraging killer whales (Orcinus orca) 
within a blue (aka common) mussel (Mytilus 
edulis) farm. Aerial video footage (38 min 27 s) 
was collected using an unmanned aerial system 
during an encounter at an aquaculture site in 
Dury Voe, Shetland, UK. Analysis of the footage 
showed the killer whale group spent 73.7% of the 
total encounter time exhibiting predatory associ-
ated behaviours and that they were observed inter-
acting with the mussel farm infrastructure only 
during “predation activity” for a total of 26 min 
52 s (72.8%). The harbour seal interacted with the 
mussel farm infrastructure during re- and proac-
tive anti-predator behaviour and when exhibiting 
fatigue for 27 min 59 s, 94.4% of the total time the 
seal was observed. It is clear that both marine and 
terrestrial predator–prey interactions are increas-
ingly occurring in settings that are in some way 
defined by the Anthropocene. The implications 
of this are discussed, including potential entan-
glement risk and human-altered “landscapes of 
fear.” As comprehension of the potential effects of 

human-altered risk grows, such knowledge should 
be taken into consideration prior to further modifi-
cation of marine habitats.
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Introduction

Knowledge of how predators and prey may expe-
rience and interact with anthropogenic structures 
within marine environments is relatively limited 
considering the unprecedented rates of “ocean 
sprawl” over the previous century (Price et al., 
2016; Bishop et al., 2017; Guiden et al., 2019; 
Hemery et al., 2021). The rapid emergence of new 
marine developments (e.g., marine renewables, 
port infrastructure) and substantial growth of exist-
ing industries and conservation objectives (e.g., 
marine protected areas) have recently been termed 
the “blue acceleration” (Jouffray et al., 2020). Many 
marine species have habitats or ranges that are 
now increasingly overlapping with areas utilised 
by human activities. As a result, these species are 
now effectively having to either avoid or attempt 
to accommodate and adapt to new infrastructure 
and evolutionarily novel stimuli (Sol et al., 2013; 
DeMars & Boutin, 2018). In some cases, species 
may stand to benefit from such modifications (e.g., 
artificial structures may aggregate prey and thus 
provide novel foraging opportunities; Inger et al., 
2009; Arnould et al., 2015; Lieber et al., 2019); 
whereas, in other cases, the consequences may 
be negative (e.g., structures may create barriers to 
movement; Li et al., 2021) or fatal (e.g., drowning 
through entanglement within an aquaculture struc-
ture; Ryan et al., 2016). 
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As anthropogenic structures in the marine 
environment increase, it is likely that the rate of 
encounters and interactions with such structures 
for most marine species will increase (Russell 
et al., 2014); thus, compiling a repository of docu-
mented interactions to develop an understanding of 
the ecological consequences of these structures is 
crucial (Bishop et al., 2017; Hemery et al., 2021). 
However, once placed into the marine environ-
ment, the anthropogenic infrastructure itself and 
any associated interactions with marine life are 
inherently difficult to monitor given that most of 
these structures are often submerged (sometimes at 
considerable depth), often located in remote loca-
tions, and are subject to severe oceanic conditions 
(e.g., salt water, wave action). This has meant that 
studies that evaluate interactions and responses 
of mobile marine megafauna to infrastructure(s) 
have tended to require novel technology or analyti-
cal techniques, consideration of incidental and/or 
opportunistic records, and has often required lat-
eral thinking (e.g., Onoufriou et al., 2019; Gillespie 
et al., 2020). For example, inferences of megafauna 
behaviour and associations around infrastructure 
have arisen through analysis of incidental sight-
ing records (e.g., Delefosse et al., 2018), analy-
sis of animal-borne tag data (e.g., Russell et al., 
2014; Arnould et al., 2015; Sparling et al., 2018; 
Onoufriou et al., 2021), analysis of passive acous-
tic monitoring (PAM) data (e.g., Todd et al., 2009, 
2016; Macaulay et al., 2017; Malinka et al., 2018; 
Palmer et al., 2021), and review of time-lapse 
camera footage (e.g., Orr et al., 2017) and under-
water Remotely Operated Vehicle (ROV) video 
footage (e.g., Todd et al., 2020; Mascorda Cabre 
et al., 2021). 

Through such techniques, foraging around infra-
structure has been inferred for a variety of marine 
mammal species. For example, a collation of sight-
ing records shows presence of at least seven marine 
mammal species around North Sea oil and gas instal-
lations, with PAM data showing an increase in diel 
echolocation activity (indicating nighttime feeding) 
of harbour porpoises (Phocoena phocoena) around 
platforms (Todd et al., 2009; Delefosse et al., 2018). 
Animal-borne tracking data has evidenced move-
ment that would indicate foraging activity of grey 
(Halichoerus grypus) and harbour (Phoca vitu-
lina) seals along pipelines; of harbour seals around 
wind turbine bases; and of Australian fur seals 
(Arctocephalus pusillus doriferus) around pipelines, 
cable routes, oil/gas wells, and shipwrecks (Russell 
et al., 2014; Arnould et al., 2015). These examples 
provide evidence that human-induced changes to 
the marine environment may be altering foraging 
opportunities and natural predator–prey landscapes 
(Madin et al., 2016), though the consequences of 
this are still not well understood.

The use of aerial video footage from unmanned 
aerial systems (UASs), particularly from drones, 
to illustrate marine megafauna interactions around 
anthropogenic structures is still uncommon 
(Lieber et al., 2019), though the increase in use of 
these devices presents potential for an increased 
understanding of relationships between them 
(Pirotta et al., 2022). This article documents an 
observation of a harbour seal taking refuge from 
a group of foraging killer whales (Orcinus orca) 
within a blue (aka common) mussel (Mytilus 
edulis) farm. Footage collected using a UAS pro-
vides a novel opportunity to observe an anthropo-
genic structure being incorporated into predator–
prey foraging strategies, of which similar records 
in the literature are scarce.

Observations
A group of killer whales was first observed from 
land at 0830 h UTC within Gulberwick Bay, 
Shetland, UK, on 6 March 2022 (Figure 1). The 
sighting was reported to the local cetacean sight-
ings’ Facebook page (“Shetland Orca Sightings”) 
and to a local sightings network instant messaging 
group (WhatsApp “Shetland Cetacean Group’), 
which enabled other watchers to track and follow 
the group as they moved north around the coast-
line during the day (Figure 1). 

These killer whales were photo-identified as 
the “27s group” through photo-identification to 
known individuals within a curated catalogue 
(Scullion et al., 2021). The group was com-
prised of two adult males (ID #72 and #34), two 
adult females (ID #27 “Vaila“ and ID #73), one 
female/subadult male (ID #152), and two juve-
niles or calves (ID #150 [born 2015 or 2016] 
and #153 [calf of ID #73, born 2019]; Scullion 
et al., 2021). This group regularly moves between 
the Northern Isles of the UK and more northerly 
waters (i.e., Faroe Islands, Iceland) and has been 
observed previously hunting harbour porpoise 
in Shetland waters (N. McCaffrey, unpub. data, 
2019; R. Shucksmith, unpub. data, 2019) and in 
Eyjafjörður, North Iceland (Scullion et al., 2021).

At 1440 h, the killer whales were reported 
moving into Dury Voe, a 6-km-long inlet on 
the east coast of mainland Shetland (60.33860, 
-1.124674; Figures 1 & 2). The group was 
observed from land moving westwards. At 
1503 h, the group was seen to approach and 
begin to mill around the Outer Grunna Voe 
(within Dury Voe) blue mussel mariculture farm 
(operated by Blueshell Mussels Ltd) (Figure 2). 
The farm consists of eight pairs of 300-m-long 
twin-headlines, each held horizontally afloat 
by specifically designed mussel floats which 
hold the twin-headlines parallel to one another, 
1.2-m apart (Figure 3). From each headline hang 
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Figure 1. Sighting of the 27s group of killer whales (Orcinus orca) around the Shetland Isles on 6 March 2022, showing 
their predicted track throughout the day. Sightings data are from the local sightings networks (“Shetland Orca Sightings” 
Facebook page and the WhatsApp “Shetland Cetacean Group”).

8- to 10-m-long dropper lines, spaced 0.5 m At 1502 h, a UAS (DJI Mavic 3 Cine drone; firm-
apart, which are the site of mussel mariculture ware, Version 01.00.0500) was launched from land 
(either spat collection or mussel growth to adult- to observe the killer whales. When the UAS arrived 
hood; at this location, lines were collecting spat; above the group, a harbour seal was seen within the 
M. Laurenson, pers. comm., 1 April 2022). The field of view located initially between the mussel 
dropper lines form a continuous loop back to the twin-headlines at the north end of the mussel farm 
headline, with 18 to 27 m between the seabed and (having not been visible from land). As the interac-
the dropper lines (site depth: 28 to 25 m). tion progressed, both the harbour seal and killer 
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Figure 2. Map of Dury Voe, an inlet on the east coast of mainland Shetland. The position of the Outer Grunna Voe mussel 
farm, the site of the killer whale and harbour seal (Phoca vitulina) predation event, is highlighted. An inset map of Shetland 
(UK) highlights the location of Dury Voe (see black rectangle).

whales moved southwards within the farm foot-
print, with the eventual kill occurring just south 
of the farm. 

The UAS completed two flights, capturing 
38 min 27 s of aerial video footage. There was 
minimal time between the killer whales begin-
ning to mill around the farm and the UAS captur-
ing footage overhead; thus, we are confident this 
event was captured within the described obser-
vations. The sea conditions during the encounter 
were Beaufort 3 (27 km/h), and the tide was fall-
ing (low tide: 1900 h, 0.35 m).

Methods

Behavioural Categorisation 
All recorded aerial video footage was viewed in 
detail, and the killer whale and lone harbour seal 
behaviours were categorised into one of several 
states (Figures 4 & 5). The duration spent in each 
behavioural state was tabulated and summed to pres-
ent overall time in each state for both predator(s) and 
prey. This was then used to infer time spent “interact-
ing” with infrastructure, which herein refers to the 
amount of time the infrastructure was in some way 

part of the encounter (e.g., swimming within head-
lines). There were a small number of occurrences 
during which either the killer whale group or the har-
bour seal was no longer within the field of view (e.g., 
swam out of field of view). Therefore, total time in 
each behavioural state represents the minimum time 
spent in each state rather than a definitive total time. 

Killer whale behavioural state was categorised 
as follows:

• Predation activity – tracking, observing, and 
predation

• Other activity – at depth, milling, and swim-
ming away from seal

• Post-kill activity – mouth nudge, tail slapping 
at the surface, prey in mouth, milling, and time 
at depth

Harbour seal behavioural state was categorised 
as follows:

• Anti-predator behaviour – action taken to 
reduce risk of predation (Gaynor et al., 2019) 
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Figure 3. (a) Diagram of mussel farm orientation; (b) example of how a mussel farm with dropper lines is set up underwater; 
and (c) aerial view of the mussel farm, including the indicative site of predation activity described in the article.

• Reactive – porpoising or swimming within 
and along longlines and in open water 

• Proactive – vigilance (head up, looking 
around)

• Fatigue – head or body resting on longline, sta-
tionary, and logging

• Immobile – captured in killer whale mouth or 
floating (presumed stunned or dead)

Note: It is possible that some behavioural obser-
vations may represent more than one behavioral 
state (e.g., when the harbour seal is logging or 

stationary within longlines, it is categorised as 
fatigue, though it may be fatigue and proac-
tive anti-predator behaviour [i.e., attempting 
to hide]). Observations were categorised based 
on the most apparent behaviour, though during 
interpretation, this complexity should be kept in 
mind. 

Video examples of each behavioural state are 
available to view in the “Supplemental Material” 
section of the Aquatic Mammals website (https://
www.aquat icmammals journal .org/ index.
php?option=com_content&view=article&id=10&
Itemid=147). The video plays three times slower 
than real time to aid in behavioural identification 
and observation of activity. 

https://www.aquaticmammalsjournal.org/index. php?option=com_content&view=article&id=10& Itemid=147
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Results

Of the 38 min 27 s of aerial video footage cap-
tured and analysed of the encounter, killer whales 
were recorded in 36 min 54 s and the harbour seal 
in 29 min 43 s. One or more of the killer whales 
exhibited behaviour associated with predation 
prior to the kill for a total of 27 min 13 s, which 
proportionally equates to 73.7% of killer whale 
group time in this behavioural state (Table 1 & 
Figure 4; supplementary video). This represents a 
minimum estimate of predator time spent in for-
aging effort as it does not include time when the 
UAS was not recording (i.e., activity before UAS 
arrived on scene, activity between video clips, 
activity during UAS battery change). Additionally, 
there was 6 min 30 s (17.6%) of observed killer 
whale post-kill behaviour recorded (e.g., at least 
two different killer whales were observed carry-
ing parts of the seal carcass in their mouth) and 
3 min 11 s (8.6%) of “other” activity (Table 1 & 
Figure 4; supplementary video). The killer whale 
group was observed interacting with the mussel 

farm infrastructure only during the “predation 
activity,” totalling 26 min 52 s (72.8%) of killer 
whale observation time (Table 1).

The harbour seal was recorded in 29 min 43 s of 
aerial video footage of which 14 min 50 s (49.9%) 
was categorised as reactive anti-predator behav-
iour, 9 min 50 s (33.1%) as proactive anti-predator 
behaviour, 4 min 53 s (16.4%) as fatigue, and 0 min 
10 s (0.5%) as immobile (Figure 5 & Table 2; sup-
plementary video). The harbour seal was observed 
interacting with the mussel farm infrastructure 
during re- and proactive anti-predator behaviours 
and when exhibiting fatigue, totalling 27 min 59 s 
or 94.4% of seal observation time (Table 2). 

During the final observed predation activity, the 
harbour seal was body slammed in open water by 
one of the killer whales, followed quickly by a tail 
slap from another killer whale (see supplementary 
video). The seal was then observed floating in 
open water, presumed stunned or dead. Following 
the kill, great black-backed gulls (Larus marinus) 
and other unidentified gull species were observed 
hovering over the water. 

Table 1. The total time and proportion of the encounter that the killer whale (Orcinus orca) group spent in each behavioural state 
during a predation event on a harbour seal (Phoca vitulina) around mussel farm infrastructure. Also shown is the total time and 
proportion of the encounter in which the killer whale group was interacting with the farm infrastructure.

Killer whale group

Behavioural 
category Sub-behavioural state

Interacting with 
infrastructure?

Time spent  
exhibiting behaviour  

(mm:ss)

Proportion of time spent in 
this behavioural type  

(%)

Predation 
activity

Tracking: Parallel swimming along 
headlines
Tracking: In open water
Tracking: Turn to follow seal
Observing: Head on
Observing: Spyhop
Predation: Attempted capture
Predation: Chase
Predation: Body slam
Predation: Tail slap (of seal)

15:52

00:10
00:30
09:46
00:44
00:01
00:04
00:04
00:02

43.03

0.45
1.34

26.48
1.99
0.06
0.18
0.17
0.08

Total 27:13 73.76
Other  
activity

Time spent at depth
Milling
Swimming away from prey

01:56
01:02
00:13

5.24
2.79
0.60

Total 03:11 8.63
Post-kill 
activity

Post kill: Mouth nudge (of seal)
Post kill: Tail slapping at surface 
Post kill: Prey in mouth
Post kill: Milling, circling
Post kill: Time spent at depth

00:01
00:02
00:55
04:43
00:49

0.06
0.08
2.50

12.80
2.20

Total 06:30 17.63
Total Total observation involving interaction  

with mussel farm infrastructure 
26:52 72.83

Total observation 36:54 100.00
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Figure 4. Example imagery of the three different states that killer whale group behaviour was categorised into during a 
predation event on a harbour seal around mussel farm infrastructure. Also described is the total time spent in that behavioural 
state, with the percentage value representing the proportion of the total encounter that the killer whales spent in that 
behavioural state (m = minutes; s = seconds).

Figure 5. Example imagery of the four different states that harbour seal behaviour was categorised into during a predation 
event on a harbour seal around mussel farm infrastructure. Also described is the total time spent in that behavioural state, 
with the percentage value representing the proportion of the total encounter that the harbour seal spent in that behavioural 
state (m = minutes; s = seconds).
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Table 2. The total time and proportion of the encounter that the harbour seal spent in each behavioural state during a killer 
whale predation event around mussel farm infrastructure. Also shown is the total time and proportion of the encounter in 
which the harbour seal was interacting with the farm infrastructure.

Harbour seal

Behavioural 
category Sub-behavioural state

Interacting with 
infrastructure?

Time spent  
exhibiting behaviour  

(mm:ss)

Proportion of time spent in 
this behavioural type  

(%)

Anti-predator 
behaviour: 
Reactive

Porpoising: Open water 00:02 0.09
Porpoising: In headlines 01:02 3.48

Swimming: In headlines 11:42 39.36

Swimming: Open water 01:27 4.86
Swimming: Chase 00:01 0.06
Turning 00:37 2.06

Total 14:50 49.91

Anti-predator 
behaviour: 
Proactive

Vigilance (e.g., head up):  
In headlines

09:50 33.12

Total 09:50 33.12

Fatigue Head on headline 00:19 1.05

Body resting on headline 00:53 2.97

Logging within headlines 03:09 10.60

Stationary within headlines 00:27 1.80

Total 04:53 16.42

Immobile Captured (seal escapes) 00:01 0.07
Floating (dead or stunned) 00:09 0.49
Total 00:10 0.56

Total Total observation involving interaction with mussel 
farm infrastructure 

27:59 94.43

Total observation 29:38 100.00

Discussion

Herein, we use the unique perspective provided by 
a UAS (drone) to share, to the best of our knowl-
edge, a previously undocumented predator–prey 
interaction (between a killer whale group and a 
harbour seal) within anthropogenic infrastructure 
(a shellfish [blue mussel] farm). This observation 
presents a new opportunity for discussion and 
understanding of how two marine apex predators 
may be “living with” marine infrastructure. 

Marine Mammal Interactions with Shellfish 
Aquaculture
Cetacean interactions with mariculture sites tend 
to be dependent on culture methods and the spe-
cies involved (Díaz López & Methion, 2017), 
with marine mammal interactions with finfish 
aquaculture frequently described (e.g., Ribeiro 
et al., 2007; Northridge et al., 2013; Bonizzoni 
et al., 2014; Frau et al., 2021). Comparatively less 

frequently reported are marine mammal interac-
tions with shellfish aquaculture, though records of 
both positive and negative interactions do exist. 

Mussel farm infrastructure has been found 
to impede collaborative hunting and coordi-
nated feeding strategies of dusky dolphins 
(Lagenorhynchus obscurus) hunting for schooling 
fish (Lloyd, 2003; Pearson et al., 2012). Further, 
avoidance and displacement has been reported 
around some shellfish farm sites (Würsig & 
Gailey, 2002; Ribeiro et al., 2007; Visser, 2007; 
Becker et al., 2011; Callier et al., 2018)—for 
example, bottlenose dolphins (Tursiops sp.) in 
Shark Bay, Western Australia, decreased their 
overall use of areas with pearl oyster (Pinctada 
fucata) farms, also exhibiting apparent reluctance 
to swim through farm infrastructure, with some 
adult females swimming all the way around the 
sites to avoid swimming through them (Watson-
Capps & Mann, 2005). Similar reluctance to enter 
the boundaries of green-lipped mussel (Perna 
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canaliculus) farms has been reported in dusky dol-
phins in New Zealand (Markowitz et al., 2004).

In contrast, there is also evidence in the lit-
erature of co-occurrence and, in some cases, 
apparent attraction of marine mammals to shell-
fish aquaculture sites. Mussel farm workers in 
Iceland report cetaceans swimming through or 
within 50 m of farms, noting sightings of har-
bour porpoises, killer whales, long-finned pilot 
whales (Globicephala melas), minke whales 
(Balaenoptera acutorostrata), humpback whales 
(Megaptera novaeangliae), and white-beaked dol-
phins (Lagenorhynchus albirostris) (Young, 2015). 
There have also been occasional observations of 
Chilean dolphins (Cephalorhynchus eutropia) 
inside the perimeter of shellfish farms (Heinrich 
et al., 2019) and an observed increase in bottlenose 
dolphin (Tursiops truncatus) occurrence around 
and close to Mediterranean mussel (Mytilus gallo-
provincialis) farms in Galicia in northwest Spain 
(Díaz López & Methion, 2017). Positive attraction 
to farms may be due to the large aggregations of 
fish species around sites, with shellfish farms acting 
as fish aggregating devices, which can then provide 
high densities of high-quality prey for dolphins and 
other fish-eating species (Díaz López & Methion, 
2017; Callier et al., 2018; Mascorda Cabre et al., 
2021). Concurrent sightings of marine mammals 
proximal to marine farms may also be in part due 
to the optimal conditions required for mariculture 
production mirroring the environmental parame-
ters preferred by marine mammals (Heinrich et al., 
2019).

In accordance with the observation documented 
herein, killer whales have been observed swim-
ming within or close to mussel farm sites on at 
least one previous occasion in Shetland waters 
(N. McCaffrey, unpub. data, 2021; Figure 6) and 
are occasionally observed in the line of sight of 
mussel farms in Icelandic waters (Young, 2015). 
Further reports of spatial overlap in the published 
literature are scarce, though avoidance of shellfish 
sites has previously been reported for New Zealand 
killer whales (Visser, 2007). Indeed, a manmade 
structure very similar to a mussel farm, known 
as a “hukilau” (a series of weighted vertical lines 
hanging in the water from a long surface line), has 
been used successfully on two occasions to corral 
entrapped killer whales (Jourdain et al., 2021) and 
to crowd schools of spinner dolphins (Stenella 
longirostris; Norris & Dohl, 1980) due to an appar-
ent unwillingness to pass through the lines. 

There are no reports of harbour seals using 
shellfish infrastructure as refuge from predation in 
the published literature, though previous tagging 
data have shown that harbour seals do forage and 
dive around mussel farms (Vincent et al., 2010), 
with seals known to feed on mussels occasionally 
(Roycroft et al., 2004). Given the high proportion 
(94.43%) of time the harbour seal spent exhibit-
ing anti-predator behaviour or fatigue within the 
farm infrastructure, we expect that the seal was 
using the structure to evade predation rather than 
for foraging itself during the described encounter.

A more strategic investigation into the fre-
quency and type of sightings of marine mammals 
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Figure 6. Two members of the 27s killer whale group swimming parallel to mussel farm headlines; this photo was taken at a 
mussel aquaculture site in Muckle Roe, Shetland, on 10 April 2021 (N. McCaffrey, unpub. data., 2021).
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around Scottish shellfish farms, including behav-
iours exhibited, would be beneficial to place this 
sighting into a wider context.

Implications for Entanglement Risk
Co-occurrence of marine farms and marine mega-
fauna increases the potential for conflict or associ-
ated risks (e.g., entanglement; Würsig & Gailey, 
2002). For shellfish farms, entanglement risk may 
vary by species and may be dependent on species 
being cultured and the type of structures deployed 
by farms. For example, dropper lines that loop 
back to the surface (continuous loop systems) 
may pose more of an entanglement risk than mul-
tiple individual dropper lines that terminate above 
the seabed. Previously, mussel spat collecting 
ropes have been identified as having the great-
est risk of entanglement potential to cetaceans 
(in comparison to adult grow-out ropes) as adult 
grow-out ropes tend to be thicker, heavier, and 
under tighter anchor and tension (Young, 2015). 
However, it is possible that tensioned anchor lines 
may cut into the skin and flesh of panicked ani-
mals (Price et al., 2016). Where risks are found to 
exist, gear modifications towards low-risk designs 
and marine spatial planning measures that con-
sider risk reduction should be encouraged (Young, 
2015; Price et al., 2016). 

During the majority of the described observa-
tions, both species were in close proximity to the 
farm infrastructure, with the harbour seal swim-
ming between dropper lines and under headlines, 
and the killer whale group and the harbour seal 
swimming under and over the end mooring lines 
(as seen in Figure 3a). Similarly, bottlenose dol-
phins swim over pearl oyster farm lines (Watson-
Capps & Mann, 2005) while dusky dolphins swim 
between lanes of mussel farm ropes and floats 
(Markowitz et al., 2004). Such close proximity 
increases the risk and likelihood of entanglement, 
and, unfortunately, there are a number of previous 
fatal entanglement cases observed and reported 
within mussel farm infrastructure (Young, 2015). 
Previous fatal records include two cases of spat 
catching line being caught around a Bryde’s 
whale’s (Balaenoptera edeni) jaws and body 
in New Zealand (Lloyd, 2003; Young, 2015), a 
juvenile humpback whale entangled in weighted 
single dropper spat collector lines, and a harbour 
porpoise with fins entangled in single dropper spat 
collecting lines, with the latter two both occurring 
in Icelandic waters (Young, 2015). There have also 
been unconfirmed reports of the entanglement of 
a Southern right whale (Eubalaena australis) in 
shellfish aquaculture gear in Argentina and of a 
gray whale (Eschrichtius robustus) in Californian 
waters in the United States (Price et al., 2016). 
Other cases were successfully disentangled and 

released following human intervention, includ-
ing a humpback whale calf entangled in mussel 
spat collecting rope off Western Australia (Groom 
& Coughran, 2012; Young, 2015) and a North 
Pacific right whale (Eubalaena japonica) found 
with four thick mussel grow-out ropes wrapped 
around its caudal peduncle and fluke off South 
Korea (Young, 2015). A minke whale is also 
reported to have been seen entangled in gear in 
an Icelandic mussel farm, but it managed to free 
itself (Young, 2015). 

To the best of our knowledge, there is no evi-
dence within the published literature of killer 
whale entanglement in shellfish aquaculture gear. 
The observed 27s killer whale group is known on 
at least two previous occasions to have interacted 
with lines in the water, with (1) a video showing a 
member of the 27s group interacting with a creel 
buoy line which then momentarily got stuck on its 
dorsal fin (Shucksmith, 2022), and (2) an incidence 
of a fatal entanglement in rope of a 5-year-old juve-
nile from the group found dead on Papa Westray, 
Orkney Isles, in 2021 (#151; Scottish Marine 
Animal Strandings Scheme [SMASS], 2021; 
Scullion et al., 2021). These observations coupled 
with those described in this article show multiple 
incidences of this particular group interacting with 
manmade structures or objects in the water—
behaviours which, if persistent, may increase the 
group’s vulnerability to entanglement and other 
negative consequences. Further observations and 
publishing of such anecdotal reports are encour-
aged to more fully understand the type and fre-
quency of interactions between marine mammals 
and manmade structures, as well as any associated 
potential implications. 

Predator–Prey Interactions in Anthropogenic 
Landscapes 
Killer whales in Shetland waters routinely patrol 
sites searching for potential prey—for example, 
frequenting seal haunts (Weir, 2002). Indeed, 
in patrolling mussel lines and structures known 
to aggregate prey species, such as common 
eider ducks (Somateria mollissima), cormorants 
(Phalacrocorax carbo), or seals (Weir, 2002; 
Roycroft et al., 2004; Booth & Ellis, 2006; Smith, 
2006; Callier et al., 2018), killer whales may now 
be taking advantage of the novel predation oppor-
tunities that anthropogenic structures provide. 
The prey aggregating characteristics of infrastruc-
ture may provide a predictable prey resource for 
apex predators, such as killer whales, which then 
essentially acts as an ecological trap for seals and 
other prey species (Fleming & Bateman, 2018). 
Such structures may change the effectiveness of 
predator–prey strategies and alter the playing field 
of predator–prey dynamics (Gaynor et al., 2019; 
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Guiden et al., 2019). For example, predator hunt-
ing efficiency may be increased through reduced 
search costs, through prey escape routes being 
physically blocked by infrastructure, or through 
the evolution and adaptation of novel foraging 
techniques (Fleming & Bateman, 2018; Gaynor 
et al., 2019). Anthropogenic structures and 
human-introduced noise may also mask sounds or 
cues that predators or prey would normally tune 
into, thus affecting predation success.

In contrast, manmade infrastructure may pro-
vide prey refugia when predators are initially 
detected or, as is the case herein, during an active 
hunt (Madin et al., 2016; Williams et al., 2020). 
Infrastructure may physically impede predators 
from entering (Visser, 2007), or it may obstruct 
and hinder feeding strategies (Würsig & Gailey, 
2002; Pearson et al., 2012). Indeed, of the 83.02% 
of total time that the harbour seal dedicated to 
anti-predator behaviour, 78.01% of the time was 
from within the mussel farm infrastructure, com-
pared to only 5.01% of the time spent exhibiting 
anti-predator behaviour in open water (Figure 5 & 
Table 2). Considering harbour seals are undergo-
ing regional declines in some UK subpopulations, 
including marked declines in Shetland waters 
(Thompson et al., 2019), the impact of anthropo-
genic structures on seals’ perceived “landscape 
of fear” (i.e., an animal’s perception of spatial 
variation in predation risk; Gaynor et al., 2019), 
along with the impact of anthropogenic struc-
tures on seals’ actual spatial variation in predation 
risk, warrants further analysis. Similar terrestrial 
research documents anthropogenic alteration as 
having provided predators easier access to tradi-
tional prey refugia (DeMars & Boutin, 2018) and 
human-active sites providing prey refuge from 
traffic-averse predators (Berger, 2007; Muhly 
et al., 2011). 

It is clear that both marine and terrestrial preda-
tor–prey interactions are occurring in settings dif-
fering from historical conditions and are instead 
defined in some way by the Anthropocene (Inger 
et al., 2009; Bishop et al., 2017; Guiden et al., 2019; 
Lieber et al., 2019; Hemery et al., 2021). As such, 
human-altered risk is ultimately reshaping evolu-
tionary pathways within the oceans (Madin et al., 
2016). Traditionally, this has not been considered 
within marine spatial planning discussions, perhaps 
due to a paucity in understanding of the wider eco-
logical effects. As comprehension of the potential 
effects of human-altered risk grows, such knowl-
edge should be taken into consideration prior to fur-
ther modification of marine habitats. Furthermore, 
it is important to evaluate the consequences of the 
predicted increase in anthropogenic infrastructure 
and activity across multiple parallel industries (e.g., 
finfish and shellfish aquaculture, shipping, tourism, 

marine renewables) on human-altered risk and 
predator–prey landscapes and interactions, as these 
effects may ultimately lead to interacting cumula-
tive impacts to marine megafauna. 
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