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Long-term monitoring studies of large marine 
predator populations are fundamental to the con-
servation and management of marine ecosys-
tems (Boyd et al., 2006; Moore, 2008). The body 
condition (Costa et al., 1989), foraging behavior 
(Trillmich & Dellinger, 1991; Melin et al., 2008), 
and population dynamics (Merrick et al., 1995; 
Monson et al., 2000) of pinnipeds can provide 
useful indices to inform ecosystem-based fisher-
ies management (Weise & Harvey, 2008; Melin 
et al., 2010). In the rapidly warming Antarctic 
Peninsula region (Vaughan et al., 2003; Cook 
et al., 2005; Turner et al., 2014), the Antarctic fur 
seal (Arctocephalus gazella) is a key indicator 
species (Agnew, 1997; Boyd & Murray, 2001). 

Accurate counts of individuals are fundamental 
to population management but can be challenging 
to obtain for pinnipeds in remote polar environ-
ments (Taylor et al., 2007; Southwell et al., 2008). 
The standard census approach for otariids, such 
as the Antarctic fur seal (hereafter AFS), is to 
obtain synoptic counts of newborn pups (Bonner, 
1968; Bengtson et al., 1990). A series of AFS pup 
surveys throughout the South Shetland Islands 
over the last 35 years (Figure 1) illustrated that 
AFS population dynamics in the archipelago are 
largely driven by pup production from breeding 
colonies at Cape Shirreff, Livingston Island, and 
on the adjacent San Telmo Islands. These two col-
onies produced 68 to 85% of all pups born in the 
South Shetland Islands between 1987 and 2008. 
Although annual counts have been conducted 
at Cape Shirreff since the 1990s, surveys of the 
San Telmo Islands have not been completed since 
2008. Despite the proximity of the San Telmo 
Islands to Cape Shirreff (~1 km west), surround-
ing reefs make access by sea dangerous and dif-
ficult (Figure 2).

Over the last decade, unoccupied aerial sys-
tems (UAS), or drones, have become common 
tools for wildlife monitoring (Goebel et al., 

2015; Christie et al., 2016; Durban et al., 2016; 
Johnston, 2019). Drones are relatively inexpen-
sive, and UAS surveys frequently obtain data less 
invasively (Krause et al., 2021) and as or more 
accurately than traditional ground-based methods 
(e.g., Krause et al., 2017; Hodgson et al., 2018). 
The goal of this study was to utilize a medium-
range vertical takeoff and landing (VTOL) UAS 
to obtain pup counts from the San Telmo Islands 
during late December after most pups have been 
born but before they suffer substantial predation 
from leopard seals (Hydrurga leptonyx; Krause 
et al., 2015, 2020). 

All UAS flights and ground surveys were con-
ducted within the United States’ Antarctic Marine 
Living Resources Program (U.S. AMLR) study area 

Figure 1. Total synoptic pup counts (live and dead) from 
the South Shetlands archipelago (SSI; gold), and from 
the subset populations at Cape Shirreff (CS; blue) and the 
San Telmo Islands (STI; green), between the 1986-1987 and 
the 2018-2019 Antarctic seasons. All seasons are referred to 
by the year the season ended. Pup counts were taken from 
Bengtson et al. (1990), Croll et al. (1992), Aguayo & Torres 
(1993), Meyer et al. (1996), Torres et al. (1998), Goebel 
et al. (2003, 2008), and U.S. Antarctic Marine Living 
Resources (AMLR) (unpub. data, 2013, 2015, 2017).
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Figure 2. (A) A satellite image of Cape Shirreff, Livingston Island, and the San Telmo Islands—the yellow dot and concentric 
circles represent the take-off/landing location and 800 m distance markers, and the red line traces the flight path of the APH-28; 
and (B) an example of the UAS-captured photomerge for the south island.

around Cape Shirreff, Livingston Island, Antarctica photographs were taken per waypoint at 66 m 
(62.468º S, 60.775º W). We flew an APH-28 altitude. The clearest image was selected per way-
(Aerial Imaging Solutions, Old Lyme, CT, USA) point, and a composite photomerge was created 
battery-powered VTOL UAS for all missions. The for each breeding area using Adobe Photoshop 
APH-28 is easily transported across rough terrain, CS6 (e.g., see Figure 2). Pups were identified and 
is low weight (1.6 kg; payload capacity: 1.8 kg) counted using the “Count Tool” in Photoshop. 
and weatherproof, and features a live-video display To account for potential bias in UAS counts 
ground station. The field configuration included a due to pups being obstructed by terrain (Reyes 
downward-facing Olympus E-PM2 digital camera et al., 1999) or otherwise non-uniform availability 
(16.1 megapixel, micro four-thirds format, 0.23 kg) during the survey (Brack et al., 2018), we con-
with an Olympus M. Zuiko 25 mm f/1.8 lens, and ducted similar mapping missions on Cape Shirreff 
a 1, 2, or 3 battery configuration (ThunderPower and coupled these missions with contemporane-
6s 440 mAmp Li-PO) as payload. The camera ous ground surveys. Four breeding areas (Copi, 
was set to record large super fine JPEG and RAW Hue, Daniel, and Marko) within the main Cape 
images, ISO 1250, aspect ratio: 4:3, shutter prior- Shirreff breeding colony were surveyed using 
ity mode (shutter speed 1/2,000), as described in identical UAS equipment and flight characteris-
previous studies (Durban et al., 2015; Goebel et al., tics on 31 December 2018 and 1 January 2019. 
2015). Calibration flights utilizing a medium con- These beaches were chosen because they have 
trast (8:1) resolution target (RST-704, Series C) similar terrain to the San Telmo Islands in which 
produced undistorted photographs with a ground- pups may be concealed from overhead UAS imag-
resolved distance of 1.0 cm at 30 m altitude (NOAA ery (e.g., Franco-Trecu et al., 2019). Ground cen-
Fisheries, unpub. data, August 2014). suses were conducted in concert with these flights 

A flight crew of four (pilot, ground station oper- by three independent observers. UAS-derived 
ator, and two spotters) obtained full coverage of counts from the four Cape Shirreff breeding 
breeding beaches on the San Telmo Islands during colonies were assessed against the “true” ground 
two consecutive, standardized mapping missions counts, and a correction factor was calculated to 
(total of 68 waypoints, set to allow ≥ 30% over- adjust UAS-derived pup counts for the San Telmo 
lap between images) on 31 December 2018. Two Islands. 
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Table 1. Antarctic fur seal (Arctocephalus gazella) pup census counts from UAS-captured photographs and concurrently by 
field biologists in the colony. Error was calculated as % Error = |[1-(UAS Count/Ground Count)]*100 |; mean correction 
factor = 1+ mean % Error.

AFS colony UAS-derived pup count Ground pup count (±SD) % error

Daniel 34 34.33 (±0.58) 0.97

Marko 62 63.00 (±1.00) 1.59

Copi 65 66.67 (±1.53) 2.50

Hue 78 79.33 (±1.15) 1.68

Mean correction factor: 1.017

The APH-28 proved to be a minimally inva- seals control this AFS population from the top 
sive, robust, and accurate survey tool. The longest down (Boveng et al., 1998; Krause et al., 2020). 
survey flight reached 1.7 km from the ground sta- However, rapid environmental change within the 
tion (Figure 2), had a 26.1 min duration, and expe- region is also expected to exert bottom-up con-
rienced no radio or video signal loss. Visual con- trol on predator populations like AFS (Massom & 
tact was maintained throughout the flight. While Stammerjohn, 2010). Warming sea-surface tem-
pup counts were similar between our ground and peratures may be limiting access of AFS to their 
aerial methodologies (Lowry, 1999), the UAS- main prey, Antarctic krill (Euphausia superba), 
derived counts consistently underestimated the by shifting its distribution and abundance (Klein 
“true” ground counts on Cape Shirreff (Table 1), et al., 2018). Further, competition for krill by 
likely due to the rocky, steep terrain obstructing recovering cetacean populations (Zerbini et al., 
pups from a top-down view. However, valida- 2019) or a growing fishery (e.g., Watters et al., 
tion error rates were low (< 3%) and resulted in a 2020) may play a role in determining AFS pup 
mean correction factor of 1.017 (Table 1). Drone production. A thorough analysis of AFS popula-
surveys provide a permanent record of the census, tion dynamics, including the effects of potential 
and a similar UAS-based approach may alleviate environmental factors, is needed for this impor-
risk and reduce costs for future pinniped surveys tant indicator species.
in remote areas (Moreland et al., 2015; Sweeney 
et al., 2015). Acknowledgments
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