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Abstract

Trophic levels of 1,105 humpback whales from
six geographically and isotopically distinct North
Pacific feeding groups were calculated using 8N
of humpback whales and regional primary con-
sumers. The overall mean trophic level for North
Pacific humpback whales was 3.6 + 0.02, indicat-
ing a diet of both fish and zooplankton, and, thus,
supporting assumptions of humpback whales as
generalist predators. The highest mean trophic
level was calculated for the north Gulf of Alaska
group (4.0 = 0.03), while the lowest was found
for the Russian and the western Aleutian Islands
group (3.3 + 0.08). Differences in mean trophic
levels suggest that feeding groups differ in the
proportion of fish and zooplankton in their diets.
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Introduction

Most seasonal or long distance migrations occur
in response to seasonal peaks in regional resource
availability and, at least with respect to land mam-
mals, are generally characterized by the avail-
ability of resources at both ends of the migra-
tion (Fryxell, 1995; Murray, 1995; Corkeron &
Connor, 1999; Alerstam et al., 2003). Large baleen
whales undergo seasonal migrations between
high-latitude foraging grounds and low-latitude
breeding grounds. In contrast to their land-based
relatives, sources of nutrition are rarely available
on the breeding grounds and, as a result, many
baleen whale species undergo long periods of
fasting (Corkeron & Connor, 1999). Migration is

an energetically expensive behavior, and energy
demands likely increase further when coupled with
fasting. Activities on the breeding grounds, such
as breeding, gestation, and lactation, require an
increase in energy demands above standard meta-
bolic requirements (Read, 2001). The physical
condition of migrant whales when they arrive on
their respective breeding grounds is thus critical to
survival and reproductive success. Poor body con-
dition of migrants, including baleen whales, has
been implicated in reduced reproductive success,
changes in offspring sex ratios, delays in migratory
timing, and lower annual survival rates (Perrins,
1970; Price et al., 1988; Wiley & Clapham, 1993;
Moller, 1994; Stolt & Fransson, 1995; Lozano
et al., 1996; Sandberg & Moore, 1996).

Stores of adipose tissue contribute the major-
ity of energy in times of fasting. Migratory birds,
for example, increase fat stores prior to migration
by increasing food intake and by selecting diets
based, in part, on nutrient content. Changes in the
fatty acid composition of migratory bird depot
fat is affected by diet composition and has direct
consequences for the energetic cost of migration
(Pierce & McWilliams, 2005). It follows that
migratory whales should optimize intake of high-
quality prey that will contribute most to their fat or
blubber layer. For marine mammals, the blubber
layer serves many functions, including defining
hydrodynamic shape, providing buoyancy, insu-
lating from cold water temperatures, and storing
energy in the form of lipids (Worthy & Edwards,
1990; Koopman et al., 2002). As a result, prey
choice for baleen whales on their feeding grounds
can have significant impacts on future events,
including migration, survival, and reproduction.

Inthe North Pacific, humpback whales (Megaptera
novaeangliae) migrate from low-latitude breeding
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grounds to geographically distinct feeding aggrega-
tions in higher latitudes. Segregation on the feeding
grounds has been attributed to the cultural transmis-
sion of fidelity to a feeding ground as a result of
a calf’s early maternal experience (Martin et al.,
1984; Baker et al., 1987; Clapham & Mayo, 1987).
At low latitudes, humpback whales may lose one
third to one half of their body mass (Dawbin, 1966;
Lockyer, 1981; Baraff et al., 1991; Laerm et al.,
1997). During this period of fasting, humpback
whales rely almost exclusively on the blubber stores
accumulated while foraging on the high-latitude
feeding grounds (Lockyer, 1981).

Humpback whales are considered to be gener-
alist in their prey selection and are known to feed
on zooplankton (including euphausiids) and small
schooling fish, such as Pacific herring (Clupea
pallasii) and capelin (Mallotus villosus). Despite
this apparently generalized diet, there are likely
significant differences between the specific diets
of feeding aggregations, with some groups target-
ing forage fish and others euphausiids. Previous
analysis of humpback whales’ stable isotope
ratios identified six geographically distinct feed-
ing grounds in the North Pacific (Witteveen
et al., 2009b). These findings suggest that feed-
ing grounds differ with respect to prey availability
and/or the feeding groups differ in their feeding
behavior or prey choice. Location of foraging will
thus directly impact the variety and quality of prey
available to humpback whales. The quality of prey
and its ability to contribute to this energy reserve
is therefore critical to the survival and reproduc-
tive success of humpback whales. As a result,
clarifying the number and boundaries of feeding
locations can have important implications in man-
agement and conservation efforts.

The analysis of stable carbon and nitrogen
isotope ratios is an inexpensive and effective
method for exploring trophic position, diet, and
feeding origins of migratory animals (Hobson,
1999). Stable nitrogen isotope ratios become
enriched by ~2 to 5% between trophic levels and
can, therefore, predict relative trophic position
(Minagawa & Wada, 1984; Fry, 1988; Hobson
et al., 1993, 1994; Sydeman et al., 1997; Kurle
& Worthy, 2002). In this study, we investigate the
relative trophic levels of the North Pacific hump-
back whale feeding groups through comparison
of stable nitrogen isotope ratios of their skin and
the tissue of primary consumers of regional food
webs. This study marks the first attempt to employ
stable isotope analysis to infer how differences
in regional diets and prey choice may influence
aspects of the humpback whale life history.

Materials and Methods

Sample Collection, Preparation, and Stable Isotope
Analysis

Humpback whale skin samples were collected foriso-
topic analysis as part of the Structure of Populations,
Levels of Abundance, and Status of Humpback
whales (SPLASH) project. The SPLASH sampling
effort covered the known range of humpback whales
in the North Pacific basin. On the feeding grounds,
the SPLASH effort occurred between 17 May and
4 December 2004 and 22 April and 4 December
2005 (Calambokidis et al., 2008). Samples were col-
lected using a hollow-tipped biopsy dart fired from
either a crossbow or modified .22 rifle, and iden-
tification photographs of the tail flukes of sampled
animals were collected whenever possible. In total,
5,604 samples were collected during SPLASH field
efforts on the feeding grounds, of which 1,105 were
used for stable isotope analysis (Calambokidis et al.,
2008; Witteveen et al., 2009b).

Upon collection, samples were preserved by
either freezing or storage in dimethyl sulfoxide
(DMSO) or ethanol. Method of preservation has
been shown to have no effect on stable isotope
analysis when lipids are extracted (Hobson et al.,
1997; Todd et al., 1997; Marcoux et al., 2007). All
skin samples were oven dried and lipids extracted
(Witteveen et al., 2009b). Samples were analyzed
for stable carbon and nitrogen isotope ratios using
a Finnigan MAT Delta Plus XL isotope ratio mass
spectrometer (IRMS). Stable isotope ratios are
reported as per mil (%o) using the standard delta
(8) notation according to 8X = [(Rumpie/Ruundaara)-1] X
1,000, where X is "N or "*C and R is the correspond-
ing ratio of "N/"“N or "C/"C. Standard reference
materials were carbon from Pee Dee Belemnite and
atmospheric nitrogen gas. Replicate measurements
of internal laboratory standards indicated a mea-
surements error of + 0.10 for both §C and &"N.

Feeding Groups and Migratory Connections

A previous analysis of "°C and "N classified North
Pacific humpback whales into six feeding groups
(Witteveen et al., 2009b). These groups were defined
as COW (California, Oregon, Washington, and
southern British Columbia), NBC (northern British
Columbia), SEAK (southeastern Alaska), NGOA
(northern Gulf of Alaska), CENT (western Gulf of
Alaska, eastern Aleutian Islands, and Bering Sea),
and WEST (western Aleutian Islands and Russia)
(Figure 1). Variables from these groups, including
8"C and 0"N, were used in classification tree analy-
sis to assign breeding areas to feeding groups based
on similarities in stable isotope ratios, describing
migratory connections. Breeding areas were Asia
(Philippines, Okinawa, and Ogasawara, Japan), the
U.S. (Hawaiian Islands), Mexico (Revillagigedos
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Figure 1. Map of the North Pacific showing ten regions of SPLASH sampling on feeding groups of humpback whales; also
shown are the six feeding groups (in caps) defined previously in the text, with solid lines showing feeding region membership

(Witteveen et al., 2009b).

Islands, Baja Peninsula, and Mainland), and Central
America (Witteveen et al., 2009a).

Baseline 8”N of Regional Food Webs

Comparisons of the "N values of humpback whale
skin cannot be made without knowledge of the §°N
values at the base of food webs for each feeding
group. Previous studies have used primary con-
sumers, such as copepods (Calanus sp.) and filter-
feeding bivalves, as good surrogates of food web
bases (Kling et al., 1992; Cabana & Rasmussen,
1996; Post, 2002; Matthews & Mazumder, 2005;
Andrews, 2010). In the present study, at least one
primary consumer from the geographic region of
each feeding group, except WEST, was used to set
the baseline 8N level of regional food webs. If
more than one primary consumer was available for
the region, the mean value of all consumers was
used for that region. With respect to WEST, the 8N
value obtained for CENT was used in the absence
of specific data for that region. Primary consumers
used were copepods (Copepoda, Neocalanus spp.,
Calanus spp.), weathervane scallops (Patinopecten
caurinus), mussels (Mystilus californiana), and
salps (Salpidae) (Table 1).

Trophic Ecology
The tropic levels of individual humpback whales
were calculated using the following equation:

Trophic Level = 2 + (8" Npecimen = 8" Niprimary consumer)/2.4

where 2 is the trophic position of the primary con-
sumer and 2.4 is the average 8"N enrichment per
trophic level for marine mammals (Hobson et al.,
1994; Post, 2002). Mean trophic-level values for
each feeding group were calculated by averaging the
trophic levels of individuals within feeding groups.

Statistical Analysis

Data were tested for normality and homogeneity of
variance using Kolmogorov-Smirnov and Levene’s
test, respectively. One-way analyses of variance
(ANOVA) were used to explore differences in trophic
level between feeding groups. Homogeneous sub-
sets were determined through Tukey’s post-hoc tests
following analysis. All statistics were conducted
within Predictive Analysis Software (PASW) 18.0
for Windows (IBM, SPSS, Inc., Somers, NY, USA)
with a critical value of a = 0.05 for all analyses
(Moran, 2003). Values presented are mean + SE.

Results

The overall mean trophic level for North Pacific
humpback whales was 3.6 + 0.02. Feeding groups’
means ranged from a low of 3.3 + 0.08 (WEST) to
a high of 4.0 + 0.03 (NGOA) (Figure 2). The lowest
individual trophic level was 1.4 and was estimated



104

Witteveen et al.

Table 1. Mean (+ SE) stable nitrogen isotope ratios (%o) and sample sizes for humpback whales and primary consumers for
each of the six distinct feeding groups of humpback whales in the North Pacific (Witteveen et al., 2009b); also shown are the

trophic levels (TL) of humpback whales for each group.

Humpback whales 1° consumers

Group n "N TL n "N Species Sources

WEST 81 123+0.19 3.3+0.08 - 9.1*% - -

CENT 282 12.6+0.07 35+0.03 57 9.1%0.13 Neocalanus spp., Calanus spp., Hirons, 2001;
Patinopecten caurinus Andrews, 2010

NGOA 199 13.6+0.07 4.0+0.03 86 8.8+0.04 Calanus spp., Patinopecten Hirons, 2001;

caurinus Andrews, 2010

SEAK 227 1277+£0.06 3.4+0.03 10 9.3+0.10 Patinopecten caurinus Andrews, 2010

NBC 135 13.0+0.08 35+0.03 42 94+0.09 Mystilus californiana Markel, unpub. data

COwW 181 14.7+0.07 3.9+0.03 15 10.2+0.69 Salpidae, Copepoda Miller, 2006;

CSCAPE 2006 project
Total 1,105 13.2+0.04 3.6+0.02 210

*No data from primary consumers in the WEST feeding group were available. The value shown is from the CENT.

for an animal sampled in SEAK in 2004. The high-
est individual trophic level came from NGOA in
2004 and was estimated at 5.1. The mean values
of 8"N for primary consumers ranged from 8.8
in NGOA to 10.2 in COW, and 8"N of humpback
whale skin increased by an average of 3.9%o¢ over
primary consumers (Table 1). This difference signi-
fied humpback whales were foraging approximately
1.6 trophic levels higher than primary consumers.
Trophic levels differed among feeding groups
(Fsi0=62.0, p < 0.001). Post-hoc tests showed
that mean trophic levels for NGOA and COW were
significantly different than for all other groups.
The trophic levels of the remaining four feeding
groups did not differ significantly (Figure 2).

Discussion

Using stable isotopes to explore the trophic levels
of humpback whales can lend insight into regional
differences in prey availability or choice. A mean
trophic level of 3.6 supports the assumption that
on a basin-wide scale, North Pacific humpback
whales are generalist predators and likely exploit
both fish and zooplankton species. If the hump-
back whales sampled in this study were feeding
primarily on zooplankton, it is likely that esti-
mates of trophic level would be closer to those
of cetacean species adhering to a more strict
plankton diet such as the bowhead whale (TL =
2.8 to 3.0; Hoekstra et al., 2002). Trophic levels
of strict ichthyophagous marine mammals tend
to be higher such as those estimated for beluga
whales (TL = 4.4 to 4.8; Lesage et al., 2001) and
ringed seals (TL = 4.4 to 4.6; Hobson et al., 2002;
Figure 2). Trophic levels estimated in this study
further suggest that humpback whales are feeding

at levels similar to those of piscivorous pelagic
fish: trophic levels between 3 and 4 and one to two
trophic levels above zooplankton (Lesage et al.,
2001; Das et al., 2003; Morissette et al., 20006).
Though COW exhibited the highest mean value
of 8"N (14.7), it had the second highest trophic
level (3.9). The highest trophic level was seen
in NGOA (4.0), where average 0"N was 1.1%0
lower than COW. The discrepancy between 8°N
and trophic levels is due to the substantial differ-
ence in the 8N values of the primary consumers
in each feeding region. While the stable nitrogen
isotope ratios of primary consumers (trophic level
= 2) were near 9.0%o for most feeding groups, the
COW value was 10.2%o (Table 1 & Figure 3). It
should be noted that the primary consumers used
were not consistent between regions due to limited
availability of samples or data. Thus, differences
may have been the results of regional differences in
&N or due to differences in how primary consum-
ers assimilate their food. Regardless, differences
need to be estimated using the best means pos-
sible. Failing to account for differences at lower
trophic levels and basing estimates of trophic level
on 8N alone would result in the assumption that
COW was feeding at a trophic level considerably
higher than all other North Pacific feeding groups
(Figure 3). Thus, it is very important to account for
differences in the baselines of food webs before
making trophic-level comparisons (Post, 2002).
Species of prey available to humpback whales
can vary widely by season and location and, while
considered generalists as a species, the trophic
levels of feeding groups of humpback whales sug-
gest significant regional differences in the types of
prey being targeted. With a trophic level at or near
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4.0, it is likely that the diet of the NGOA and COW
groups had a diet proportionally higher in fish spe-
cies than zooplankton, while the remaining groups
all had trophic levels closer to 3.5, indicating a more
mixed diet of both fish and zooplankton. Field obser-
vations provide support for relative trophic-level dif-
ferences. For example, humpback whales have been
seen foraging extensively on euphausiid swarms in
the eastern Aleutian Islands, an area included in the
CENT feeding group with an estimated trophic level
of 3.5 (C. Matkin, North Gulf Oceanic Society, pers.
comm.). In contrast, the higher trophic level of COW
is substantiated by recent observations of a switch
from zooplankton (prior to 2004) to fish for animals
feeding off California (J. Calambokidis, Cascadia
Research, pers. comm.). Further, humpback whales
foraging near Kodiak Island, Alaska, within the
NGOA feeding group, have been shown to target
aggregations of capelin (Witteveen et al., 2008).
Such variation in prey availability and use may
significantly influence the life history parameters of
feeding groups. Humpback whales depend on high-
quality forage to sustain migratory and breeding
behaviors through lengthy periods of fasting. Diets of
poor quality or quantity may not contribute enough
lipid to adipose tissue reserves, which are catabo-
lized during migration and periods of limited nutri-
ent intake (Lockyer, 1986; Bairlein, 1987; Izhaki &
Safriel, 1989; Castellini & Rea, 1992; Parrish, 1997).
Lipid content is the primary determinant of energy
density, both of which can vary widely across taxa
(Anthony et al., 2000). For example, the energy
content of euphausiids is relatively low at 0.74 kJ/g
(Davis et al., 1998) but can be greater than 5 kJ/g for
some forage fish (Anthony et al., 2000). Assuming
lipid content and energy density are surrogate mea-
sures of prey quality, it would follow that humpback
whales in the COW or NGOA feeding groups may
receive more benefits in the form of stored energy
from their predation of fish or require smaller quan-
tities of prey than groups foraging on euphausiids
such as WEST or SEAK. However, other factors in
addition to lipid content, such as energy required for
capture and density of aggregations, are also likely to
contribute to the overall quality of a prey source.
While the benefits of foraging are accrued on
feeding grounds, they are realized on breeding
grounds and, as such, the impact of foraging loca-
tion on breeding animals must also be considered.
Lockyer (2007) reviewed how food energy storage
in the form of blubber can be vital to a number
of functions, including insulation and reproductive
efficiency, in both large migratory and small non-
migratory cetaceans. Body condition was shown
to be tightly linked to fertility in the closely related
fin whales (Lockyer, 1986, 1987a, 1987b, 1990).
Anthony et al. (2000) states that “by selecting
for prey quality, in conjunction with maximizing

quantity, piscivorous predators can potentially
increase their own fitness and the productivity of
the population” (p. 67) if all prey resources require
the same energy to capture. Thus, based on assump-
tions regarding energy density and prey quality,
animals breeding in Central America and Mainland
Mexico, which feed in COW (Rasmussen et al.,
2007; Witteveen et al., 2009a), should benefit from
higher trophic-level prey, perhaps in the form of
increased survival or fecundity. Conversely, ani-
mals breeding in one of the western Pacific areas
may not incur the same energetic benefits because
stable isotope ratios indicated that their primary
foraging locations were CENT and WEST where
they were feeding on lower trophic-level prey
(Witteveen et al., 2009a). While our results do not
provide evidence of differences in prey quality,
they do show differences in trophic level, which
may be the first step in the process of determining
how prey availability of choice may affect the life
history parameters of humpback whales.

Sampling of humpback whales occurred across
two feeding seasons and, thus, represent only a
portion of any single whale’s feeding history. This
narrow sampling window may be limiting because,
as stated previously, humpback whale prey can be
highly variable both temporally and spatially, as
well as in their energy content. The availability and
abundance of prey within the boundaries of each
feeding group likely dictates which prey hump-
back whales actually ingest. If certain prey types
are predictably available, it is not unreasonable to
believe that feeding groups of humpback whales
could develop into regional prey specialists. Such
specialties would easily become fixed since segre-
gation of feeding groups has occurred as the result
of a cultural transmission of migration routes from
mother to calf (Aidley, 1981; Martin et al., 1984;
Baker et al., 1987; Clapham & Mayo, 1987). Thus,
predator selection of a prey resource with relatively
low available energy may have significant long-
term population effects resulting from reductions
in body condition and reproductive success (Urton
& Hobson, 2005; Inger et al., 2006).

There are limitations in this exploration of
stable isotope ratios and trophic levels. Discussion
of diet composition and trophic position depend on
an accurate estimate of stable isotope enrichment
of “N between humpback whales and their prey.
Unfortunately, there are presently no published
trophic enrichment factors for humpback whales.
Other studies have used enrichment factors rang-
ing between 2.4 to 3.8%o (Hobson & Welch, 1992;
Hoekstra et al., 2002; Born et al., 2003; Das et al.,
2003). We used the lowest value of 2.4%¢ because
it has been applied to previous studies of marine
mammals, including cetaceans (Hobson et al.,
1996; Das et al., 2003). Choosing a higher trophic
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enrichment factor would decrease our estimates of
trophic level, changing our assumption of a fish-
based diet for COW and NGOA to a mixed diet
and from a mixed diet to a zooplankton-dominated
diet for the remaining feeding groups. However,
despite these changes, the relative differences
and conclusions about differences in prey types
between feeding groups would remain the same.

Calculations of trophic level also depend highly
on the turnover rate of assimilated tissues if diets
are not constant throughout the feeding season.
The turnover rates of tissues are proportional to
their metabolism, with active tissues (i.e., skin or
muscle) showing faster turnover than inert tissues
(i.e., baleen or bone) (Tieszen et al., 1983; Schell
et al., 1989a, 1989b; Hobson & Clark, 1992;
MacAvoy et al., 2006; Podlesak & McWilliams,
2006). Though never empirically tested, the skin
of rorqual whales likely exhibits high metabolic
rates, and a turnover rate of 7 to 14 d for hump-
back whale skin has been suggested (Todd, 1997).
Thus, estimates here may reflect the trophic level
of only the past 2 wks to 1 mo of foraging.

Information is needed to elucidate how prey
use may be influencing life history factors such
as reproductive success. First, more specific diet
composition for each feeding group needs to be
described. With the recent advancements in stable
isotope mixing equations, feeding group diets could
be modeled if a variety of prey resources from
each region were available for analysis (Phillips &
Gregg, 2001, 2003; Newsome et al., 2004; Phillips
et al., 2005). Dietary mixing models in this manner
would allow for more specific diet comparisons
to be made, rather than comparing generalized
fish vs zooplankton diets. If data on life history
parameters, including, but not limited to, calf and
adult survival, fecundity, and body condition, were
available, correlations between these parameters
and dietary differences could be explored. With the
growing number of long-term datasets for regional
humpback whale populations and the recent efforts
of SPLASH, some parameters may be obtainable.

Analysis of stable carbon and nitrogen iso-
tope ratios has shown that there may be sig-
nificant differences in the prey being utilized
between feeding groups of humpback whales in
the North Pacific. These results highlight the need
for additional research focused on diet composi-
tion within each feeding group as previous studies
have shown that diet composition can have signifi-
cant impacts on fitness.
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